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Abstract

A generalized nonlinear driving force (NLDF) approximation of intraparticle mass transfer rate for nonlinear isotherm systems with
macropore diffusion control is presented. The obtained expression is compared with the solutions of the Fickian diffusion and adsorption
model and excellent accuracy over the entire time (fractional uptake) domain and for all values of the Freundlich exponent (adopted as the
isotherm nonlinearity measure) is demonstrated. The high accuracy of the model is further demonstrated by comparison with experimental
data. The presented methodology for the derivation of driving force approximations is shown to be a useful alternative to the methodology
based on intraparticle concentration profile approximations.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The modeling of transient diffusion and adsorp-
tion/reaction processes in porous particles requires the nu-
merical solution of a system of partial differential equations
involving time and spatial variables[1–3]. The substantial
simplification of computations resulting from the applica-
tion of approximate models has motivated numerous studies
whose aim was to develop and assess the applicability and
accuracy of such models[4–40]. A detail review of the work
done until 1995 is presented by Mendes et al.[4]. A careful
analysis of the currently available models shows that:

(1) The majority of the available models is based on the
assumption of a linear isotherm. In many systems of
practical importance, however, the isotherm nonlinear-
ity cannot be neglected. Nevertheless very often the
same approximations are applied for linear and non-
linear systems, and the errors resulting from this fact
are overlooked. In particular, the application of linear
models to derive kinetic parameters for nonlinear sorp-
tion isotherm systems leads to significant errors. This
issue is discussed in[5] and the necessity to apply
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nonlinear models for experimental data interpretation is
stressed.

(2) Most of the models are highly inaccurate in the short
time region because they do not capture the singular
nature of the unit step[6]. This is particularly true for
the widely applied linear driving force models. Such
models cannot be used in the modeling of kinetic sep-
arations where the dimensionless diffusion time for the
slow diffusing component is well below 0.003[7].

(3) Some models lead to expressions where the time vari-
able appears explicitly. Such models are difficult to be
used in the modeling of distributed parameter systems
(e.g. fixed-bed adsorbers).

(4) None of these models has been tested against experimen-
tal data for the prediction of integral step uptake curves.

In this study, an analysis of the case of pore diffusion
control adsorption kinetics with a nonlinear isotherm is pre-
sented. As a result of this analysis, a new nonlinear driving
force (NLDF) model is developed. The new model is highly
accurate (maximum error 2.8%) significantly improving on
currently available approximations for all values of time
and for all values of the Freundlich exponentν (adopted
as the isotherm nonlinearity measure). The new model is
asymptotically exact both for short and long times. Further-
more forν = 0 (irreversible isotherm), the model reduces to
the exact analytical solution resulting from the shell model.
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Nomenclature

Ā = mA/mA∞ fractional uptake
C fluid phase concentration
Cb bulk fluid phase concentration
Dp diffusion coefficient
m parameter (Eq. (17))
mA mass of the adsorbed (desorbed)

component
mA∞ mass of the adsorbed (desorbed)

component at equilibrium
M molecular weight of adsorbed

component
qmol solid phase concentration
qmol b solid phase concentration in

equilibrium withCb
r radial coordinate
Rp radius of pellet
t time
x = r/Rp dimensionless radial coordinate
X = C/Cb dimensionless fluid phase

concentration
Y = (qmol/qmol b) dimensionless solid phase

concentration

Greek symbols
α parameter (Eq. (9))
µ parameter (Eq. (14))
ν exponent in Freundlich equation
ρp particle density
τ = t/tD dimensionless time

In fact, the presented model is the only known approxima-
tion which has this property, a feature which guarantees its
accuracy for strongly nonlinear systems.

2. Exact model and solutions

If pore diffusion is the rate controlling step and the
isotherm is nonlinear (Freundlich,Y = Xν, 0 ≤ ν ≤ 1), the
dimensionless equation describing the intraparticle diffusion
and adsorption in an initially adsorbate free spherical pellet,
subject atτ = 0 to a unit step change of the concentration
at its surface is

νXν−1∂X

∂τ
= ∂2X

∂x2
+ 2

x

∂X

∂x
(1)

with the conditions

τ = 0, X = 0 (2a)

x = 0,
∂X

∂x
= 0 (2b)

x = 1, X = 1 (2c)

Analytical solutions of the partial differentialEq. (1)with the
conditions (2) are available only for the cases of irreversible
(ν = 0) and linear (ν = 1) isotherms.

Case I (Irreversible isotherm). In the case of the irre-
versible isotherm the analytical solution resulting from the
shell model is

τ = 1
6[1 + 2(1 − Ā) − 3(1 − Ā)2/3] (3)

DifferentiatingEq. (3)leads to the following expression for
the fractional uptake rate:

dĀ

dτ
=

[
3 + 3(1 − Ā)1/3

1 − (1 − Ā)1/3

]
(1 − Ā)1/3 (4)

Case II (Linear isotherm). In the case of the linear isotherm
the analytical solution is

Ā = 1 − 6

π2

∞∑
n=1

1

n2
exp(−n2π2τ) (5)

with the uptake rate given by

dĀ

dτ
= 6

∞∑
n=1

exp(−n2π2τ) (6)

As was shown in our earlier work[8], the fractional uptake
rate for a linear isotherm system can be approximated by
the following nonlinear driving force model

dĀ

dτ
=

[
π2 + 18

π

(1 − Ā)2

Ā

]
(1 − Ā) (7)

The application of this model leads to a maximum error of
2.8% compared with the exact analytical solution (Eq. (5)).

3. Development of the nonlinear driving force model
for the Freundlich isotherm

Let us now define the functionG(Ā, ν) which can be
considered a generalization of the functionG(Ā) introduced
by Georgiou and Kupiec[8] for linear systems

G(Ā, ν) =
[

dĀ/dτ

(1 − Ā)m
− α

]
1 − (1 − Ā)m

(1 − Ā)m
(8)

where

α = lim
Ā→1

dĀ/dτ

(1 − Ā)m
(9)

and the parameterm is a function ofν (Table 1). It should
be noted that for a linear isothermα = π2 andm = 1 which
is basis for the LDF model[9,10].

In the case of the irreversible isotherm it can be easily
shown from (Eq. (4)) that

G(Ā,0) = 3 (10)
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Table 1
Values of parametersµ, m andα

ν = 0 ν = 1 0<ν<1

µ
√

18a 6/
√
πa (1 − ν)

√
18+ 6ν/

√
π [3]

m 1/3a 1 [8] [2ν + 1]/3 [this work]
α 3a π2a 3 + π2[1 − (3/π2)ν] [this work]
mµ2/2 3 18/π

a Theoretical values.

In the case of the linear isotherm, the functionG(Ā,1) can
be approximated[8] as

G(Ā,1) ∼= 18

π
(1 − Ā) (11)

The behavior of the functionG(Ā, ν) at short times (̄A → 0)
can be found from the following well known asymptotically
exact expression[3]

Ā = µ
√
τ (12)

which upon differentiation leads to

dĀ

dτ
= µ2

2Ā
(13)

where the values ofµ are shown inTable 1. The values ofµ
at the limiting cases can be obtained from theoretical con-
siderations. For intermediate values of Freundlich exponent
ν the linear interpolation

µ = (1 − ν)
√

18+ 6ν√
π

(14)

can be applied[3].
At short times (small fractional uptakes) fromEq. (8)

results

lim
Ā→0

G ∼= lim
Ā→0

{
dĀ

dτ
[1 − (1 − Ā)m]

}
∼= lim

Ā→0

(
mĀ

dĀ

dτ

)

(15)

CombiningEqs (12), (13) and (15)one obtains

lim
Ā→0

G = 1
2mµ

2 (16)

On the basis of the definition (Eq. (8)) it is understandable
that any approximation of the functionG(Ā, ν) leads to an
equivalent driving force model. In order to obtain the gen-
eralized NDLF model the following procedure was applied:

(a) The functionG(Ā, ν) was calculated from the available
analytical solutions forν = 0 and 1.

(b) For intermediate values ofν, the functionG(Ā, ν) was
determined as follows:

Step I. The fractional uptake and the fractional uptake
rate were obtained by the numerical solution ofEq. (1)
with the boundary conditions (2). A finite difference
scheme has been applied.

Fig. 1. The parameterα as a function ofν: line—Eq. (18); symbols—
Eq. (9).

Step II. The parameterm was assumed to be a linear
function ofν

m = 1
3(2ν + 1) (17)

satisfying the limiting cases.

Step III. The parameterα was determined on the basis
of Eq. (9) and the results from Steps I and II. The so
obtained values ofα can be approximated with

α = 3 + π2
[
1 −

(
3

π2

)ν]
(18)

A comparison of the numerical (Eq. (9)) and approxi-
mate (Eq. (18)) values ofα is given inFig. 1.

Step IV. The functionG(Ā, ν) was determined from the
above results and theEq. (8). A suitable approximation
of the functionG(Ā, ν) (Fig. 2) is

G ∼= 1
2mµ

2(1 − Ā)ν (19)

Fig. 2. The functionG(Ā, ν): lines—Eq. (19); symbols—numerical results.
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(c) CombiningEqs. (8) and (19)leads to the following non-
linear driving force approximation (NLDF)

dĀ

dτ
=

[
α + mµ2

2

(1 − Ā)m+ν

1 − (1 − Ā)m

]
(1 − Ā)m (20)

The values of the parametersµ, m and α are given in
Table 1. This equation reduces toEq. (7)in the case of linear
systems and to the exact analytical solution resulting from
the shell model (Eq. (4)) in the case of irreversible isotherm.
At small times it reduces to asymptotically exactEq. (13)
andat long times to

dĀ

dτ
= α(1 − Ā)m (21)

which may be regarded as a generalization of the linear
driving force approximation to nonlinear systems.

4. Numerical results and discussion

In order to evaluate the accuracy of the proposed non-
linear driving force approximation, the ordinary differential
Eq. (20) was integrated with the initial conditionτ = 0,
Ā = 0 for various values ofν. The obtained results̄Aapp(τ)

were compared with the numerical resultsĀnum(τ) from the
integration ofEq. (1)with the conditions (2). The results of
these computations are illustrated inFig. 3, where the frac-
tional uptake curves resulting from the exact (Eq. (1)) and
the approximate (Eq. (20)) models are shown. An excellent
agreement of the two models is observed.

In Fig. 4, the functions

δapp = Āir − Āapp

Āir
(22)

Fig. 4. The dependence ofδ on dimensionless timeτ: lines—Eq. (23); symbols—Eq. (22).

Fig. 3. Fractional uptake curves for various values of the Freundlich
exponent: lines—approximate model (Eq. (20)); symbols—exact model
(Eq. (1) with conditions (2)).

δnum = Āir − Ānum

Āir
(23)

show the deviation from the irreversible isotherm case and
allow the comparison of the numerical and approximate re-
sults. The fractional uptakēAir was calculated fromEq. (3).
It should be noted that the relative errorε can be calculated
from

ε = Āapp− Ānum

Ānum
= δnum − δapp

1 − δnum
(24)

It is evident that the smaller the difference betweenδnum and
δapp the more accurate is the model. Furthermore, the value
of δ(0) can be obtained fromEqs. (12) and (14)

δ(0) =
(

1 − 6√
18π

)
ν ∼= 0.2021ν (25)
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As can be seen fromFig. 4, the accuracy of the proposed
driving force approximation is excellent for allν and over
the entire time domain including small times. The maximum
error arises in the case of a linear system (Fig. 4) and is
equal to

εmax = 0.215− 0.193

1 − 0.215
= 0.028= 2.8%

With decreasingν the accuracy of the NLDF model increases
as expected from the theoretical analysis.

5. Comparison with experimental data

The driving force approximation (Eq. (20)) was fur-
thermore used in the analysis of the experimental data by
Ruthven and Derrah[41] both for differential and integral
steps. In these experiments, the adsorption and desorption
of various hydrocarbons on Davison 5A (C-521) molecu-
lar sieves was studied under conditions where the external
mass transfer resistance is negligible.

Since the NLDF model (Eq. (20)) was based on the as-
sumption of a Freundlich isotherm, the first step was to fit
the equilibrium data[41]. It should be noted, however, that
Ruthven and Derrah[41] have used the Langmuir equation
to fit the data. This shows that the application of the NLDF
model is not limited to the Freundlich systems. The expo-
nentν is a convenient measure of the isotherm nonlinearity
and can be estimated from equilibrium data. In the case of
propylene at 50◦C the obtained Freundlich isotherm is

qmol = 1.72p0.080 (26)

while the isotherm for propane at 75◦C is given by

qmol = 0.278p0.371 (27)

For butylene at 75◦C isotherm equation is following

qmol = 1.53p0.064 (28)

where qmol is the adsorbate concentration (moles of ad-
sorbate/kg of adsorbent), andp is the adsorbate pressure
(mmHg). InFig. 5 the equilibrium data are shown. It is ev-
ident that the Freundlich isotherm can describe the equilib-
rium data satisfactorily.

In the case of differential steps, the isotherm can be
linearized and thereforeEq. (7) is applicable. InFig. 6
the fractional uptake curve for the desorption of propylene
(differential step,p0 = 22.3 mmHg,p1 = 16.6 mmHg) is
shown. The symbols represent the experimental results by
Ruthven and Derrah[41], while the line is the least-square
fit of the experimental data using the NLDF model (Eq. (7)).
The estimated value of the parametertD = 1255 s. The
excellent agreement between the NLDF prediction and the
experimental data indicates the accuracy and applicability
of the presented model.

Fig. 5. Adsorption equilibrium: lines—Freundlich isotherms (Eqs. (26),
(27) and (28)); symbols—experimental data[41].

Using the so obtained value of the parametertD, the ef-
fective diffusivity was calculated:

De = R2
p

tD
(29)

with Rp = 0.0023 m[41], the effective diffusivity was found
asDe = 4.2 × 10−9 m2/s. The diffusion coefficient in the
macropores is given by[41]:

Dp = w(1 − εp)

εp

(
dqmol b

dCb

)
ρpMDe (30)

where

dqmol b

dCb
= RT

M

dqmol b

dp
(31)

In the case of propylene (Eq. (26)):

dqmol b

dp
= 0.138p−0.920 (32)

Fig. 6. Fractional uptake curves: lines—predictions of the NLDF model;
symbols—experimental data[41].
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Table 2
Comparison of effective diffusion coefficients calculated in different ways

Effective diffusion coefficientsDe 109 m2/s

Shell model
(Eq. (3)) ν = 0

NLDF model
(Eq. (20))

Linear isotherm model
(Eq. (5)) ν = 1

Values from[41]

Butylene, 75◦C, ν = 0.064 7.7 8.1 14.4 14.1
Propane 75◦C, ν = 0.371 4.4 5.6 8.1 8.0

Using the above equations and the data[41]:

εp = 0.26, w = 0.83, ρp(kg/m3) = 1160,

T = 323K, M(kg/mol) = 0.042

the estimated value wasDp = 2.1×10−6 m2/s which agrees
very well with the resultDp = 2.0× 10−6 m2/s obtained by
Ruthven and Derrah[41].

In the case of integral steps the isotherm nonlinearity must
be taken into account. Using the estimated value of the Fre-
undlich exponentν = 0.371 (Eq. (27)) for the adsorption of
propane at 75◦C [41] the following values of the parameters
µ, m andα were calculated fromEqs. (14), (17) and (18):

µ = 3.92, m = 0.581, α = 6.52

In Fig. 6 the fractional uptake curve for the adsorption of
propane (integral step,p0 = 29 mmHg,p1 = 105 mmHg)
is shown. The symbols represent the experimental results by
Ruthven and Derrah[41], while the line is the least-square fit
of the experimental data using the NLDF model (Eq. (20)).
The estimated value of the parametertD = 945 s. Again an
excellent agreement between the NLDF prediction and the
experimental data is observed.

Computations were also performed for the case of buty-
lene adsorption at 75◦C (integral step,p0 = 1.1 mmHg,
p1 = 86 mmHg). In this caseν = 0.064 and, therefore,

µ = 4.19, m = 0.376, α = 3.72

The estimated value of the parametertD = 652 s (Fig. 6).
For comparison purposes the time constantstD were

calculated using the assumptions of rectangular isotherm
(shell modelEq. (3)) and linear isotherm (Eq. (5)). The so
obtained time constants were used to calculate the effective
diffusivities. The results of these computations are shown in
Table 2. A comparison of these results shows that the values
obtained by Ruthven and Derrah[41] are almost identical to
those resulting from the linear isotherm model (Eq. (5)). In
the case of the strongly adsorbed butylene (ν = 0.064), the
value obtained using the NLDF model is very closed to the
value resulting from the shell model, while the value ob-
tained using the linear isotherm assumption is much higher.
This shows that the application of the linear isotherm model
(Eq. (5)) in the case of strongly adsorbed substances leads
to highly overestimated effective diffusivities. In the case
of the moderately strongly adsorbed propane (ν = 0.371),
the NLDF model leads to intermediate values between the
two extreme cases.

The above results indicate that the NLDF model can be
successfully applied in parameter estimation from integral
step experiments.

6. Conclusions

In this study, a nonlinear driving force approximation of
intraparticle mass transfer rate in pore diffusion controlled
nonlinear adsorption systems has been presented. This ap-
proximation is proved to be very accurate and applicable
both for linear and nonlinear systems. In the case of an
irreversible isotherm, the NLDF model reduces to the exact
analytical solution resulting from the shell model, a feature
that indicates its accuracy for highly nonlinear systems.
The NLDF model is shown to successfully predict the up-
take curves both for differential and integral steps and to
be valid over the entire time domain. These properties of
the presented approximation show that the methodology in-
troduced in our earlier work for diffusion/adsorption[8,11]
and diffusion/reaction[12] systems is a useful and efficient
alternative to the much exploited methodology based on
intraparticle concentration profile approximations.
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